Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PeerJ ; 12: e16828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436023

RESUMO

A new labrid fish species, Halichoeres sanchezi n. sp., is described from eight specimens collected in the Revillagigedo Archipelago in the tropical eastern Pacific Ocean, off the coast of Mexico. The new species belongs to the Halichoeres melanotis species complex that is found throughout the region, differing by 2.4% in the mtDNA cytochrome c oxidase I sequence from its nearest relative, H. melanotis from Panama, and 2.9% from Halichoeres salmofasciatus from Cocos Island, off Costa Rica. The complex is distinguished from others in the region by having a black spot on the opercular flap and a prominent black area on the caudal fin of males. The juveniles and initial phase of the new species closely resemble those of H. salmofasciatus and Halichoeres malpelo from Malpelo Island of Colombia, differing in having an oblong black spot with a yellow dorsal margin on the mid-dorsal fin of initial-phase adults as well as on juveniles. In contrast, the terminal-phase male color pattern is distinct from other relatives, being vermilion to orangish brown with dark scale outlines, a white patch on the upper abdomen, and a prominent black band covering the posterior caudal peduncle and base of the caudal fin. The new species adds to the list of endemic fish species for the isolated archipelago and is an interesting case of island endemism in the region. The discovery was made during the joint 2022 collecting expedition to the archipelago, which featured a pioneering collaborative approach to an inventory of an island ichthyofauna, specifically including expert underwater photographers systematically documenting specimens in situ, before hand-collection, and then photographed fresh, tissue-sampled, and subsequently vouchered in museum collections.


Assuntos
Cavidade Abdominal , Perciformes , Masculino , Animais , México , Oceano Pacífico , Peixes/genética
2.
Zootaxa ; 3887(3): 377-92, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25543938

RESUMO

Koeda et al. (2014) published a review of fishes of the genus Pempheris of the Red Sea. They concluded that there are four species: P. adusta Bleeker, P. mangula Cuvier, P. nesogallica Cuvier, and a new species, P. tominagai. We show that the first three species they cite are not present in the Red Sea, as follows. 1) P. adusta is a western Pacific species (type locality Ambon), described only from the holotype, and without a dark border on the anal fin. Koeda et al. (2014) mistakenly apply that name to P. flavicycla which is a widespread Indian Ocean species characterized by a prominent broad black border along the anal fin. Koeda et al. (2014) also redescribe P. adusta, using Indian Ocean specimens of P. flavicycla, despite the coloration difference and a 2.5% difference in the mtDNA sequence (COI) between Indian Ocean and W. Pacific populations. 2) P. mangula is a species from the east coast of India (type locality Visakhapatnam), clearly distinct in both gill-raker counts and a 1.1% sequence divergence in COI from its Red Sea relative P. rhomboidea. Pempheris mangula is not found west of India, and Koeda et al. (2014) mistakenly use DNA from Oman and Madagascar to represent P. mangula, instead of genetic material available from the type locality. 3) Pempheris nesogallica (type locality Mauritius) is unknown from the Red Sea. Koeda et al. (2014) separate P. nesogallica from P. rhomboidea (their "P. mangula") by eye size; we fail to find any difference (and they use their purported eye-size difference to erroneously rename one of the two syntypes of P. nesogallica as "P. mangula"). 4) Their new species P. tominagai is referred to as the Indian Ocean sister species of "P. schwenkii of the Pacific"; however, the type locality of P. schwenkii is the Batu Islands off the SW coast of Sumatra in the Indian Ocean. They mistakenly include specimens of a distant South African species as paratypes of P. tominagai. We have determined that P. tominagai is a valid species endemic to the Red Sea and Gulf of Aden. They misidentify one lot of P. rhomboidea in the collection of the Hebrew University of Jerusalem as their record of P. nesogallica from the Red Sea. They misidentify the specimen in their photograph of Fig. 1B as P. adusta and use it as material for their redescription of the species, but it is now shown to be a paratype of Pempheris bexillon Mooi & Randall, 2014. Additionally, they regard P. malabarica Cuvier as a junior synonym of P. molucca Cuvier, but the name P. molucca is based on a fanciful painting and is unavailable as a nomen dubium. They treat Pempheris russellii Day as a junior synonym of P. mangula; however, it is distinct in having longer pectoral fins, a larger eye, and more gill rakers. Their key to the species of Pempheris of the Red Sea is incorrect. We present a new key and conclude that only three species of Pempheris are presently known from the Red Sea: P. flavicycla, P. rhomboidea, and P. tominagai.


Assuntos
Perciformes/classificação , Animais , Demografia , Oceano Índico , Perciformes/anatomia & histologia , Perciformes/genética , Filogenia
3.
Zootaxa ; 3669: 551-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26312357

RESUMO

Some of the more valuable contributions of a standardized DNA sequence database (the DNA barcode) are matching specimens of different life stages and confirming the species identity of individuals from distant locations. These applications can facilitate the detective work required to solve difficult taxonomic problems. In this case, a match was made between the COI mtDNA sequence of an adult male wrasse recently caught at the tip of Baja California in Mexico in deep water (30-100m) and sequences from a series of unusual larvae collected about 3500 km to the south, in the open ocean over the Galápagos Rift hydrothermal vents in 1985. The Baja adults fit the recent description of Halichoeres raisneri Baldwin & McCosker, 2001 from the Galápagos and Cocos Islands. However, another deepwater labrid is known from the same site and depth in Baja; it is the type locality for the century-old holotype and only specimen of the Cape Wrasse Pseudojulis inornatus Gilbert, 1890 (later as Pseudojuloides inornatus). Deepwater video images from the tip of Baja show wrasses identical to H. raisneri photographed in Galápagos but who also fit the description of Pseudojulis inornatus. This coincidence led to a closer investigation of the holotype with x-ray, which revealed unanticipated caniniform teeth (vs. incisiform in Pseudojuloides) and an error in the fin-ray count in the original description, both of which mistakenly separated Halichoeres raisneri. The two species now match in markings, meristics, and morphology as well as overlapping range and are therefore synonymized. Phenetic and phylogenetic trees using mtDNA and nuclear DNA sequences show the species is not close to any other lineage and does not group with the other julidine labrids of the New World or the Pseudojuloides or Halichoeres of the Indo-Pacific. The distinctive larval morphology, long, thin, and flattened with a sharply pointed black-tipped snout, resembles no other described labrid larvae and, without an available genus, the new genus Sagittalarva Victor, n. gen. and the new combination Sagittalarva inornata (Gilbert, 1890), n. gen., n. comb. are described.


Assuntos
Código de Barras de DNA Taxonômico , Perciformes/classificação , Perciformes/genética , Animais , Feminino , Larva/anatomia & histologia , Larva/classificação , Larva/genética , Larva/fisiologia , Masculino , Oceano Pacífico , Perciformes/anatomia & histologia , Perciformes/fisiologia , Filogenia , Especificidade da Espécie
4.
Zookeys ; (79): 21-72, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21594143

RESUMO

Specimens of Starksia were collected throughout the western Atlantic, and a 650-bp portion of the mitochondrial gene cytochrome oxidase-c subunit I (COl) was sequenced as part of a re-analysis of species diversity of western Central Atlantic shorefishes. A neighbor-joining tree constructed from the sequence data suggests the existence of several cryptic species. Voucher specimens from each genetically distinct lineage and color photographs of vouchers taken prior to dissection and preservation were examined for diagnostic morphological characters. The results suggest that Starksia atlantica, Starksia lepicoelia, and Starksia sluiteri are species complexes, and each comprises three or more species. Seven new species are described. DNA data usually support morphological features, but some incongruence between genetic and morphological data exists. Genetic lineages are only recognized as species if supported by morphology. Genetic lineages within western Atlantic Starksia generally correspond to geography, such that members of each species complex have a very restricted geographical distribution. Increasing geographical coverage of sampling locations will almost certainly increase the number of Starksia species and species complexes recognized in the western Atlantic. Combining molecular and morphological investigations is bringing clarity to the taxonomy of many genera of morphologically similar fishes and increasing the number of currently recognized species. Future phylogenetic studies should help resolve species relationships and shed light on patterns of speciation in western Atlantic Starksia.

5.
Mol Phylogenet Evol ; 40(3): 795-807, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16759882

RESUMO

Relationships based on mtDNA and nDNA sequences were used to assess effects of two major geographic barriers (the >30 myo Atlantic ocean and the approximately 11 myo Amazon-Orinoco outflow) on speciation among Atlantic parrotfishes (Sparisoma and Nicholsina). Allopatric distributions of sister taxa implicate isolating actions of both barriers in all recent speciation in these fishes, with no clear indications that any speciation resulted from other mechanisms. Molecular clock estimates of the timing of lineage splits indicate that both barriers acted by limiting dispersal well after they formed, although the Amazon barrier also may have been a vicariance agent. Fluctuations in sealevel, climate, and ocean-current dynamics over the past approximately 10 my likely produced marked variation in the effectiveness of both barriers, but particularly the Amazon barrier, allowing intermittent dispersal leading to establishment and allopatric speciation. A dynamic Amazon barrier represents a major engine of West Atlantic faunal enrichment that has repeatedly facilitated bidirectional dispersal, allopatric speciation, and remixing of the Caribbean and Brazilian faunas.


Assuntos
Especiação Genética , Perciformes/genética , Perciformes/fisiologia , Crescimento Demográfico , Animais , Oceano Atlântico , Sequência de Bases , Citocromos b/genética , Variação Genética , Geografia , Mar Mediterrâneo , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Tempo
6.
Rev. biol. trop ; 49(Supl.1): 101-110, jul. 2001. ilus, graf
Artigo em Inglês | LILACS | ID: lil-502468

RESUMO

Several new species of the razorfish genus Xyrichtys have been discovered recently in the tropical eastern Pacific region. The taxonomy of this group of fishes is not clear, since juveniles, females, and males often have different color patterns and morphologies, and some species descriptions are incomplete. We review the members of this genus in this region based on our recent collections and describe the juvenile, initial, and terminal phase color patterns of the Cape razorfish, Xyrichtys mundiceps. We question the validity of Xyrichtys perlas, which appears to represent the initial phase of X. mundiceps. We conclude that six species of Xyrichtys are present in the tropical eastern Pacific, including one undescribed species we have collected from the Galapagos Islands and one uncollected new species from the Revillagigedos Islands. Xyrichtys mundiceps is found in Baja California and in Panama Xyrichtys pavo is a large species found throughout the Indo-Pacific and eastern Pacific. Xyrichtys victori is a colorful species native to the Galapagos and Cocos Islands, and Xyrichtys wellingtoni is apparently endemic to Clipperton Atoll. The undescribed species is known only from the Galapagos Islands and has a dark-colored juvenile with extended first dorsal fin rays that are not separated from the remainder of the fin. The terminal phase of this species is unknown. We present keys to the known juvenile and initial phase stages of five species. In addition, we document the allometric growth of the head of razorfishes and show that the head shape of small individuals of Xyrichtys razorfishes is no different from that of the razorfish genus Novaculichthys, and therefore we suggest caution in using this character to distinguish these genera.


Assuntos
Animais , Masculino , Feminino , Perciformes/anatomia & histologia , Pigmentação da Pele , Oceano Pacífico , Perciformes/classificação , Perciformes/crescimento & desenvolvimento
7.
Oecologia ; 68(1): 15-19, 1985 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28310903

RESUMO

The mass mortality of reef corals in the eastern Pacific as a result of the 1982-1983 El Niño oceanographic anomaly permitted the first large scale test of resource limitation for a coral reef fish. Population densities of territorial herbivorous damselfish did not respond to the massive regional increase in space available for the cultivation of algal food following the El Niño event. The proportion of juveniles in the population was low and new recruits were uncommon, indicating that recruitment rates rather than resource supply probably control the abundance of this coral reef damselfish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...